今天给各位分享反函数怎么求的知识,其中也会对反函数怎么求大学进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
函数的反函数怎么求
首先看这个函数是不是单调函数,如果不是则反函数不存在。如果是单调函数,则只要把x和y互换,然后解出y即可。例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
求反函数先判断反函数是否存在,严格单调函数必定有严格单调的反函数,并且二者单调性相同,再判断该函数与它的反函数在相应区间上单调性是否一致,例如 求 y=x^2 的反函数。x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
反函数的定义是:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,大部分偶函数不存在反函数。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。
反函数是对一个给定函数做逆运算的函数,一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数存在的条件为原函数的函数关系必须是一一对应的(不一定是整个数域内的),它的定义域、值域分别是原函数的值域、定义域。
若一个奇函数存在反函数,则它的反函数也是奇函数。因此,在求反函数时要先确定是不是单调函数,如果是就把x和y互换,然后解出y即可。
如何求反函数,有什么公式
一、判断反函数是否存在:
由反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同:
1、先判读这个函数是否为单调函数,若非单调函数,则其反函数不存在。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点 x₁ 和 x₂ ,当 x₁x₂ 时,有 y₁y₂ ,则称y=f(x)在D上严格单调递增;当 x₁x₂ 时,有 y₁y₂,则称 y=f(x) 在D上严格单调递减。
2、再判断该函数与它的反函数在相应区间上单调性是否一致;
满足以上条件即反函数存在。
二、具体求法:
例如 求 y=x^2 的反函数。
x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
扩展资料:
反函数存在定理
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1x2时,有y1y2,则称y=f(x)在D上严格单调递增;当x1x2时,有y1y2,则称y=f(x)在D上严格单调递减。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。
而由于f的严格单增性,对D中任一x'x,都有y'y;任一x''x,都有y''y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。
若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1y2矛盾。
因此x1x2,即当y1y2时,有f-1(y1)f-1(y2)。这就证明了反函数f-1也是严格单增的。
如果f在D上严格单减,证明类似。
参考资料来源:百度百科 - 反函数
数学上的求一个函数的反函数怎么求有哪些方法,试举几
反函数就是从函数y=f(x)中解出x,用y表示 :x=φ(y),如果对于y的每一个值,x都有唯一的值和它对应,那么x=φ(y)就是y=f(x)的反函数,习惯上,用x表示自变量,所以x=φ(y)通常写成y=φ(y) (即对换x,y的位置)。
求一个函数的反函数:
1、从原函数式子中解出 x 用 y 表示;
2、对换 x,y ;
3、标明反函数的定义域
注:反函数里的x是原函数里的y,原函数中,y≥0,所以反函数里的x≥0。在原函数和反函数中,由于交换了x、y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
扩展资料:
反函数存在定理:
定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。
在证明这个定理之前先介绍函数的严格单调性。
设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1x2时,有y1y2,则称y=f(x)在D上严格单调递增;当x1x2时,有y1y2,则称y=f(x)在D上严格单调递减。
证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。
而由于f的严格单增性,对D中任一x'x,都有y'y;任一x''x,都有y''y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。
任取f(D)中的两点y1和y2,设y1y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。
若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1y2矛盾。
因此x1x2,即当y1y2时,有f-1(y1)f-1(y2)。这就证明了反函数f-1也是严格单增的。
如果f在D上严格单减,证明类似。
反函数怎么求
1.先求出原函数的值域,因为原函数的值域就是反函数的定义域
(我们知道函数的三要素是定义域,值域,对应法则,所以先求反函数的定义域是球反函数的第一步)
2.反解x,也就是用y来表示x
3.改写,交换位置,也就是把x改成y,把y改成x
4.写出反函数及其定义域
如何求反函数
1、首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。
2、例如:
y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。
扩展资料:
1、反函数的性质:
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性;
(7)定义域、值域相反对应法则互逆(三反);
(8)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I }内也可导,且:
(9)y=x的反函数是它本身。
2、反函数存在定理:
严格单调函数必定有严格单调的反函数,并且二者单调性相同。
参考资料来源:百度百科 - 反函数
反函数的求解方法是什么?
一般是将y=f(x)转换成x=f(y)的形式,然后将x、y互换即可。
如:
y=ln(x)→x=e^y→反函数y=e^x
y=x³→x=³√y→反函数y=³√x
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x) 。
反函数y=f -1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
扩展资料
反函数的性质:
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性。
关于反函数怎么求和反函数怎么求大学的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
还没有评论,来说两句吧...