作者:刘骥(@刘骥-JimLiu)
jimliu.net/2015/09/26/a-brief-look-at-binary-ops-in-js/
如有好文章投稿,请点击 → 这里了解详情
写这篇博客的起源是小胡子哥的一篇文章《你所不知道的Java数组你所不知道的Java数组》。
因为随着XHR2和现代浏览器的普及,在浏览器当中处理二进制不再向过去那样无所适从,随着Canvas/WebGL等新技术逐渐开始进入大众视野,也会用到一些字节数组或者16位、8位整数等东西。在node.js刚刚发布的4.0版本中,Buffer的底层使用了更符合JS标准的Uint8Array来实现,浏览器和node.js再次向相同的目标靠近了一点点,所以对于JS中处理二进制,我就打算写这篇文章作一个入门性质的流水账,方便一些对二进制处理不了解的同学快速入门,虽然在前端领域用到的不多,不过也可以作为茶余饭后的休闲谈资。
二进制数据在JS程序里的表达
现今世界上几乎所有的计算机体系结构都是以字节(byte)为二进制数据的基本单位(注:不是说最小单位),所以二进制常常以字节数组的形式存在于程序当中。例如在C#里面,就用byte[],标准C里面没有byte类型,但可以通过typedef把byte定义为unsigned char的别名,效果是一样的。
JS设计之初似乎根本没想过要处理二进制的东西,加上对类型的极度弱化,对于字节的概念可以说是非常非常的模糊。如果要表达字节数组,那么似乎只能用一个普通数组来表示。
HTML5体系引入了一大堆新的东西,比如XHR2,是可以上传或下载二进制内容的,与之配套的东西就是JS里的ArrayBuffer和Typed Array了。
ArrayBuffer是一个固定长度的字节序列,你可以通过new ArrayBuffer(length)来得到一片空间,或者用下文将会介绍的方法从XHR2等途径获取。由于内部实现与数组不一样,ArrayBuffer通常都是连续内存(注意,这只是经验之谈,并不是规范也不是文档所明确的),因此对于高密度的访问操作而言它比JS中的Array速度会快很多(但并不要用它来简单地代替Array)。如果用Chrome的Profile工具查看Heap Snapshot,会发现ArrayBuffer会被单独列为一类,也许它的内存分配和布局与Array以及其他JS对象有一些差别吧。
ArrayBuffer是不能直接被访问的,因此需要借助Typed Array。Typed Array是一组具体数据类型的Array-Like类型的统称,包括
Int8Array8位有符号整数,类似于C里面的char
Uint8Array8位无符号整数,类似于C里面的unsignedchar
Uint8ClampedArray8位无符号整数,跟Uint8类似,但在溢出处理上不大一样
Int16Array后面这些类型就不罗嗦了
Uint16Array
Int32Array
Uint32Array
Float32Array
Float64Array
Typed Array的背后是一个ArrayBuffer,也就是说,事实上的数据是存在ArrayBuffer里面的,而Typed Array只是给你提供了一个某种类型的读写接口,用MDN的话说,叫做
Multiple views on the same data
举个栗子,如果我们有一个ArrayBuffer名为buffer(先不考虑怎么构造这个测试数据),内容如下:
0102030405060708
也就是说它有8个字节,我们分别用它来构造Uint8Array, Uint16Array, Uint32Array,则可以得到
varu8= newUint8Array(buffer);// length为8
varu16= newUint16Array(buffer);// length为4
varu32= newUint32Array(buffer);// length为2
它们的内容分别为
[1,2,3,4,5,6,7,8]
[513,1027,1541,2055]
[67305985,134678021]
这不难理解。
可以看出,如果要手工构造上面的测试数据ArrayBuffer,用Uint8Array就会很方便(呃事实上这是我个人最常用的一种Typed Array)。
而如果用同样的ArrayBuffer构建带符号整数类型,则可能因为整数溢出而得到不同的结果,上面的例子并没有碰到,有兴趣的话可以自己试试。因此使用Typed Array也可以用来做有符号数和无符号数的转换。
如果你用过canvas的getImageData/putImageData的话,会发现它给你的就是一个Uint8ClampedArray,这东西访问起来速度比JS的原生Array快很多,使得对canvas进行高速的像素操作成为可能。
然而最最重要的一个概念还是:Typed Array不直接存放任何数据,所有对Typed Array进行读写的操作,最终都会落实到它背后所持有的ArrayBuffer的身上。ArrayBuffer才是真正的raw bytes,而Typed Array只是一个操作窗口/操作视图(View)。
获取二进制数据
nodejs那边先按住不表,这里谈谈在网页里如何获取二进制数据?常见的办法有3种,1是通过 2,2是通过File和Blob一套相关接口。
通过 2
XHR2的接口跟XHR几乎是一样的,当制定xhr.responseType = 'arraybuffer'以后,在成功获取数据的回调里就可以通过xhr.response来得到请求结果的ArrayBuffer了,然后就可以按照你的意愿来构造各种Typed Array进行访问。
responseType还可以有blob取值,可以用xhr.response获得Blob对象。
通过File和Blob
在HTML5中提供了对表单的文件控件<input type="file" />更丰富的操作,可以通过inputDOM对象的.files来获取一个FileList,当然通常浏览器都只提供了单选的文件控件,于是这里都只会有一个File对象。另外,通过拖拽、剪贴板等方式也能获取到File或者Blob。
File继承了Blob,并提供了name, lastModifiedDate等基础元数据,但是依然是一个深度封装,不能直接获取到它的二进制。
Blob是Binary large object的缩写,它与ArrayBuffer的区别是除了raw bytes以外它还提供了mime type作为元数据。但它依然是无法直接被读写的。
这时候需要借助FileReader的帮忙。FileReader提供了一组用来将Blob读取为更为实用的类型的方法
readAsArrayBuffer()
readAsBinaryString()
readAsDataURL()
readAsText()
例如
varfile= get_file_some_how();
varfr= newFileReader();
fr.= function(e){
e.target.result;// 读取的结果
};
fr.readAsDataUrl(file);// readAsArrayBuffer
可以干什么呢?例如图片上传之前的本地预览(甚至基于canvas的编辑)等等都可以实现了。
Blob的其他构造方法多而杂,这里就先不到处搬运文档了。
消费二进制数据
何谓消费?最常见的方式也许就是通过XHR2直接把二进制数据以文件方式POST到服务端去。
这里我比较推荐使用FormData来构造POST数据。因为在服务端收的时候会比较容易一些,具体有兴趣可以去找找别人的例子。
虽然直接提交ArrayBuffer也是可以的,但是这种时候服务端收到的POST body会是一大团,用起来不方便。如果要使用FormData来提交ArrayBuffer,需要先将其构造成Blob。
对Typed Array的构造留个心眼
当使用new xxxxxArray(arrayBuffer)这个重载进行构造的时候,它会默认基于此ArrayBuffer进行构造。但当使用new xxxxArray(another_typed_array)这个重载的时候,则是进行“拷贝构造”,这样两个Typed Array会指向不同的buffer,需要注意这是否符合预期。
如果需要基于同一个ArrayBuffer来构造Typed Array,可以使用Typed Array的buffer, byteLength,byteOffset来获取它背后的ArrayBuffer。
Tips(坑)
对内存对齐留个心眼
当使用ArrayBuffer来构造Typed Array的时候,可以指定byteOffset参数,例如
varbuffer= get_array_buffer_some_how();
vari16= newInt16Array(buffer,10);
上面的代码就能以buffer向后偏移10字节处为起点来构造Int16Array,但是如果将10设置为一个奇数,会发现如下错误:
RangeError:start offset of Int16Array should beamultiple of2
这是因为Typed Array对内存对齐有要求,它不能在非对齐的位置建立,同理,Uint32Array和Int32Array则要求偏移量是4字节对齐的。
因此如果你希望在非对齐的位置进行读写,则需要借助DataView的帮忙。
对字节序留个心眼
我们日常中所写的程序,几乎都不需要关心字节序,因此这个问题没那么严重,知道自己的程序会有字节序问题的人,开发到这里也肯定会知道问题的存在,但这里还是稍微提一下。
按照MDN的说法,Typed Array只会使用当前平台的字节序,例如我们现在用的桌面电脑不论PC还是Mac都是x86/x64的,也就是little-endian了。
使用DataView,不仅可以解决上面说到的内存对齐的问题,还可以指定读写时的字节序,具体参数都在文档里面了,就不搬运了。
使用DataView配合Typed Array也可以做到一个检测当前平台字节序的技巧:
functionisLittleEndian(){
varbuf= newArrayBuffer(2);
varview= newDataView(buf);
view.setInt16(0,256,true);//显式以little endian写入数据
// 此时buf里的内存布局应该是 00 01
vari16= newInt16Array(buf);
// 如果以little endian读取,它就是256;以big endian读取,则是1
return(i16[0]=== 256);
}
如果你编写的程序需要垮体系结构例如x86/ARM/PPC等,则在交换文件和网络包的时候需要谨慎处理字节序,当然一个办法是在这些地方预先规范统一字节序以防后患。不过那些都是题外话了。
小结
使用ArrayBuffer来存储一段字节,使用Typed Array来构建一个具体数值类型的访问窗口,使用DataView对非对齐或在乎字节序的ArrayBuffer进行更精确的操作,使用XHR2, Blob, File, FileReader, FormData等多种方式来获取或消费ArrayBuffer。
另外罗嗦一句,浏览器还提供了一系列所谓的“Binary String”,就是一些看起来像乱码一样的字符串,然后又提供了atob/btoa这种方式来对和“Binary String”进行相互转换,甚至FileReader还提供了readAsBinaryString方法(已经废弃了,善哉)。这个Binary String真是谁用谁遭殃,别问我为什么知道……
觉得本文对你有帮助?请分享给更多人
关注「前端大全」,提升前端技能
还没有评论,来说两句吧...